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ABSTRACT

Uncertainty is an important part of formal decision making. Acknowledging this point, modern probabilistic
risk assessments (PRAs) typically include uncertainty on parameters of the logic models used in the
assessment. What is not addressed in many PRAs is the incorporation of uncertainty specific to the logic
models themselves. Our paper investigates the uncertainty in the unreliability of a nuclear power plant
auxiliary feedwater system.  Herein, we focus on two types of uncertainty, namely "aleatory" and
"epistemic."  The parameter uncertainty (epistemic) for the model was determined from actual operational
failure data from 1987 to 1995.  Then, the system uncertainty was estimated and plotted for both aleatory
and epistemic contributions.  The results demonstrate that the epistemic uncertainty dominates the overall
unreliability uncertainty for the auxiliary feedwater system.  Factors such as the system success criteria (a
type of epistemic uncertainty) can have dramatic impacts on the overall uncertainty outcome.  As a result,
PRA analysts may consider investing resources specifically focused on modelling uncertainty issues.
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INTRODUCTION

Nuclear power plants are designed with many complex systems.  During normal conditions, some of these
systems are operating to maintain the nuclear power plant within its operating boundaries.  The remainder
of these systems are in standby.  The standby systems are designed to operate if there is an off-normal
occurrence.  Because of their importance to safety, most standby systems are evaluated in the context of
a probabilistic risk assessment (PRA).



The standby system that is discussed in this paper is a Westinghouse-designed auxiliary feedwater (AFW)
system.  As a starting point, we utilized work that was part of the "AFW system study" performed at the
Idaho National Engineering and Environmental Laboratory (INEEL). (Poloski et al., 1998)  This work
estimated the AFW system probability of failure and the uncertainty associated with the model parameters,
as is common in many PRA evaluations. (Bertucio et al., 1990)  But, previous work did little to evaluate
model uncertainty or uncertainty in the aleatory portions of the fault trees.  In general, the evaluation of
model, parameter, and aleatory uncertainty has been (largely) based on expert opinion. (Helton, 1994;
Frank, 1999; Hoffman and Hammonds, 1994; Winkler, 1996)

In this paper, we will evaluate two types of uncertainty for the AFW system.  The first type of uncertainty
is aleatory uncertainty.  Other names for aleatory uncertainty are “random uncertainties” and “stochastic
uncertainties.”  Aleatory uncertainty deals with the randomness (or predictability) of an event.  For
example, one may model the failure of a pump to operate, where the occurrence of failure can occur at a
random time.  What cannot be predicted is exactly when the pump will fail, even if a large quantity of
failure data is taken.

The second type of uncertainty is epistemic uncertainty.  Epistemic uncertainty deals with our state-of-
knowledge about portions of our model.  This uncertainty has been called “subjective uncertainty,”
"parameter uncertainty," or “state-of-knowledge uncertainty.”  Epistemic uncertainty can be viewed (and
is in this report) to include both parameter-specific uncertainty and model-specific uncertainty, which are
simply different levels embodied within the AFW model.  The model represents a higher level than the basic
events, which themselves contain another lower level, namely the parameters such as the failure rate or
demand failure probability.

MODELING THE AFW SYSTEM

The AFW system is a safety-related system primarily used to provide feedwater to the steam generators
and maintain a heat sink whenever there is a loss of main feedwater or a loss of offsite power.  The AFW
system is designed as a backup to the main feedwater system, but does not have the capacity to provide
sufficient flow during normal power operations.  It will automatically start and provide water to the steam
generators in the event that normal main feedwater is lost.  The water supplied to the steam generators by
the AFW system is enough to remove the decay heat that is being produced.  The AFW system operates
until the reactor is at the temperature and pressure for the residual heat removal system to be placed in
service, which then cools the reactor down and maintains it in a safe condition.

Before the AFW system can be analyzed, its boundaries along with the uncertainties need to be defined.
To help define these parts, a “model of the world” (MOW) for the AFW system is presented in Figure 1.
Figure 1 lists the model types used in this analysis and illustrates how aleatory and epistemic uncertainties
fit within the AFW model.  The MOW should be viewed as the mathematical model that describes the
physical aspects of the system being analyzed. (Apostolakis, 1995)

The major AFW segments are broken down into separate parts for this analysis.  For each segment, both
aleatory and epistemic uncertainties are treated.  Also, the deterministic portion of the MOW is given as
the fault tree logic itself.  Note that Boolean logic dictates that if gate inputs are known, then the output
is known (hence it is deterministic).  For this paper, the AFW system has three pumps (one turbine driven
and two motor driven).  These pumps feed four steam generators through discharge segments.  The pumps
take suction from the condensate storage tank.



Figure 1: The model of the world structure for the example AFW system.

While the fault tree logic itself is a deterministic model, the model uncertainty is classified as epistemic
uncertainty.  This model uncertainty arises when assumptions are made due to our lack of precise
knowledge about the system.  One of the common assumptions made is that only active components are
modeled.  Another modeling assumption is the success criterion for the system.  For the AFW system, there
can be many combinations of success criteria (i.e., from one-of-three pumps feeding one-of-four steam
generators to three-of-three pumps feeding four-of-four steam generators).  In general, only a few success
criteria are thought to be applicable, and are generally dictated by other analysis such as thermal-hydraulic
evaluations (which are deterministic).  A third common assumption is that partial failures are not addressed
in the fault tree modeling.

The system success criteria assumption deserves additional attention.  The reason for a range of success
criteria stems from the types of events that can occur at a nuclear power plant.  Different initiating events
can require more or less AFW flow to mitigate the event.  The amount of AFW steam generator cooling
is generally based upon thermal-hydraulic calculations, but the parameters and boundary conditions utilized
in these calculations are not known 100%.  Therefore, to handle the uncertainty in the different possible
success criteria, weight factors or probabilities could be assigned to each success criteria.  These weight
factors may then be viewed as the epistemic uncertainty of the success criteria.

With these modeling issues in mind, we are ready to develop the AFW fault tree.  For this paper, the fault
tree was created using the Systems Analysis Programs for Hands-on Integrated Reliability Evaluations
(SAPHIRE) program.  The SAPHIRE program was developed at the INEEL. (Russell et al., 1999) 
SAPHIRE will use the fault tree to determine the minimal cut sets, which then dictates the unreliability for
the AFW system.  SAPHIRE can then be called upon to perform an uncertainty analysis.



Our AFW fault tree was constructed specifically to evaluate both aleatory and epistemic uncertainties; an
example of the tree structure used is shown in Figure 2.  Embedded within the AFW fault tree are weight
factors tied to various success criteria; with each success criteria, the underlying Boolean logic is modified
to account for the specifics of that criteria (e.g., two pumps required rather than three).  Once the success
criteria portion of the fault tree was developed, the individual components were modeled.  Parametric
(epistemic) uncertainty is accounted for via the component data, which was taken from operational
experience.  The AFW was modeled from the discharge section back to the suction portion of the system.

The aleatory uncertainty is accounted for by separating component-level basic events into two parts.  One
part represents the underlying probability model (i.e., binomial model or Poisson model) while the other
part represents the “applicability” of the underling probability model.  For this second part, we simply
ascribed the applicability weight as either underestimating or overestimating the failure probability of the
component.

The underlying probability model requires parameters such as a failure rate or demand probability.  For
these parameters, we assigned epistemic uncertainty based upon the data collected for the original INEEL
analysis.  But, because of the lack of component-specific data, the population for similar components is
generally used in determining a component’s failure probability.  In order to better estimate an individual
component failure probability (since we have a specific component, not a “population” of components),
a weight factor was assigned to the component basic event.

Figure 2: Example fault tree logic structure for the AFW system.

RESULTS

The AFW fault tree was analyzed to generate the minimal cut sets. Then, uncertainty analyses were
performed using Monte Carlo sampling to propagate the epistemic and aleatory uncertainties through the
minimal cut sets.  Each uncertainty analysis run used 10,000 samples.



From each of the Monte Carlo runs, a cumulative distribution was obtained from the vector of 10,000
samples.  Figure 3 illustrates the uncertainty results for two cases: (1) the model allowing just the
parameter epistemic uncertainties to be sampled and (2) the model allowing just the aleatory uncertainties
to be sampled.  Note that the epistemic results span a much larger region than the aleatory results.

Figure 3.  Uncertainty analysis results for epistemic and aleatory cases.

Now, we would like to evaluate both uncertainties in one, integrated assessment.  The results from the case
(1) and case (2) above, along with the combined case, are shown in Table 1.  In Table 1, we list the mean
and select percentiles from the uncertainty analyses.  Note that the epistemic uncertainty portion of the
combined fault tree tends to dominate the overall uncertainty results for the higher percentiles.

Table 1: Uncertainty analysis results.
Percentiles

Uncertainty Analysis mean 5th 50th 95th

Epistemic (parameter) Uncertainty Analysis 4.10E-04 1.9E-05 2.2E-04 1.5E-03

Aleatory Uncertainty Analysis 4.08E-04 2.2E-04 4.0E-04 6.3E-04

Combined Epistemic and Aleatory Analysis 4.13E-04 1.7E-05 2.2E-04 1.5E–03

By modeling the fault tree with weight factors for the probability model and failure probabilities, different
sensitivity analyses can be performed in order to see the effect of uncertainty.  For example, we evaluated
the sensitivity of the success criteria on the overall results.  In this case, we assumed that the system
requires 1-of-3 pumps 85% of the time (the nominal case), both motor driven pumps or the turbine driven
pump 14% of the time, and all three pumps 1% of the time.  We then reran the epistemic uncertainty
analysis; the results of this case are shown in Figure 4.  Note that even though we assumed that all three
pumps will be required only 1% of the time, this assumption dominated the overall results and forced the
epistemic uncertainty to be much larger than that seen in the nominal case.  This behavior would indicate
that analysts should be sensitive to critical modeling assumptions such as the success criteria, particularly
when determining the uncertainty inherent in the model results.



Figure 4.  Epistemic uncertainty evaluations with and without success criteria variations.
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